- and thus Now, we are able to estimate the expression m(E(xo,r)) = C(n) 12arcsin~ sin n- 2 'l9 1d'l9 1. We have C(n) 12arcsin~ 'l9~-2d'l91 {::::::::} C(n) ~ m(E(xo,r)) ~ C(n) (~) n-212arcsin~ 'l9~-2d'l91 (2arcsin~)n-1 ~ m(E(xo,r)) ~ C(n) (~)n-2 (2arcsin~)n-1 1r n 1 n 1 {::::::::} C(n)2 - r n-1 > m (E( xo r )) > C(n)2 -n 2 r n-1 , - (n - 1)21r n- 1 ' n-l 2 n-l 2 0< r:::; Let us now consider the case m(f~(o,tr~) where t > 1.

# Advances in Analysis and Geometry: New Developments Using by Andreas Axelsson, Alan McIntosh (auth.), Tao Qian, Thomas

Rated
5 –
based on
votes
of